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ABSTRACT
In this paper, we consider a class of generalized convex functions, which are defined according to 

a pair of quasi-arithmetic means and  called ( ),φ ψ  -convex functions and establish some q-Fejér 
inequalities for  such a function class.

Keywords: Convex function, Hermite-Hadamard inequalitiy, Fejér inequality, q-intergral inequality, 
q-calculus.
1. INTRODUCTION

The Hermite-Hadamard inequality was first 
introduced in 1883 by Hermite (Hermite, 1883) 
and 10 years later by Hadamard (Hadamard, 1893): 
Let [ ]: ,f a b →  be a convex function, then

1 ( ) ( )( )
2 2

b

a

a b f a f bf f x dx
b a

+ +  ≤ ≤  −  ∫ . (1)

The weighted form of the Hermite-
Hadamard inequality was given by Fejér (Fejér, 
1996): If [ ]: ,f a b →  is a convex function, 

:[ , ] [0, )g a b → ∞  is an integrable function 

with ( ) 0
b

a
g x dx >∫  and symmetry to 

2
a b+ ,i.e., 

( ) ( )g x g a b x= + −  for all [ ],x a b∈ , then

( ) ( ) ( ) ( )
2 2( )

b

a
b

a

f x g x dxa b f a f bf
g x dx

+ +  ≤ ≤ 
 

∫
∫

. (2)

The concept of q-calculus was introduced by 
Jackson in 1910 (Jackson, 1910), then widely 
applied in other fields such as number theory, 
combinatorics, hypergeometric functions, 
orthogonal polynomials, quantum theory, 
mechanics and is considered a bridge between 
mathematics and physics (see Ernst, 2012, Kac & 
Cheung, 2022). In articles Tariboon & Ntouyas, 
2013, 2014, the concept of q-derivative and 
q-integral on a finite [ ],a b ⊂   and established a 
number of versions of integral inequalities for the 
concept of q-integral.

Alp and co-authors (Apl & et at., 2018) 
established the q-Hermite-Hadamard inequality 
for left q-integrals: If [ ]: ,f a b →  is a convex 
function, then 

( ) ( ) ( )1 .
1 1 1

b

q
a

qf a f bq bf f x d x
q b a α

α + +
≤ ≤ + − + 

∫  (3)

Bermudo and colleagues in 2020 introduced 
the concept of right q-integral and established 
the q-Hermite-Hadamard inequality for convex 

functions [ ]: ,f a b →  as follows

( ) ( ) ( )1 .
1 1

b
b

q
a

f a qf ba qbf f x d x
q b a q

+ +
≤ ≤ + − + 

∫  (4)

Inequalities (3) and (4) have recently received 
extensive research attention, see for example 
works Liu & Hefeng, 2016, Noor & et al., 2015.

Most recently, Ali and co-authors in 2023 
proposed another version of the q-Hermite-
Hadamard inequality involving  left q-integral and 
right q-integral as follows: If [ ]: ,f a b →  is a 
convex function, then

( )
21

2

a b

q
a

a bf f x d x
b a α

+
+  ≤  −  

∫        

         

( )
2

) .( ( )
2

b
b

q
a b

f a f bf x d x
+


 +
≤+ 


∫    (5)

Inspired by the studies mentioned above, in this 
paper, we establish some q-Fejér type inequalities 
for the class of ( ),φ ψ  -convex functions. Our 
results are extensions and refinements of recent 
results for the q-Hermite-Hadamard inequality.
2. RESEARCH CONTENTS AND METHODS
2.1. Research contents

•  ( ),φ ψ  -convex function.
•  The q-Fejér inequality for the class of 

( ),φ ψ  -convex functions.  
2.2. Research methods

•  Theoretical mathematical research includes 
analysis, comparison, contrast, generalization, 
and specialization to predict and introduce new 
inequalities;

•  Using estimates and assessments based on 
convex function theory;

•  Incorporates several new methods and 
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techniques recently developed by us when 
constructing Fejér-type inequalities for ( ),φ ψ 
-convex functions.
3. RESULTS AND DISCUSSIONS

First, we recall the definition of a ( ),φ ψ 
-convex function and its basic properties. In this 
article, symbols I and J are real number intervals, 

: Iφ →  and : Jψ →  are strictly monotone 
and continuous functions. Use the pair of quasi-
arithmetic mean φ  and ψ , where 

( )1( , ; ) ( ( ) 1 ( ))a b a bψ α φ αφ α φ−= + −
Aummann (Aummann, 1933) introduced the 
concept of ( ),φ ψ  -convex function as follows.

Definition 1 (Aummann, 1933). :f I J→  is 
called ( ),φ ψ  -convex function if

        ( ) ( ))( ), ; ( , ( );f a b f a f bψα α≤        (6)
for all ,a b I∈  and [ ]0;1 .α ∈  
In the case where inequality (6) is satisfied 

with ( )x xφ = , we say f is ψ -convex, and if f  
satisfies inequality (6) with ( )x xφ =  and ( )xψ , 
then f  is a convex function.

Note, if ψ  is an increasing function then  
:f I J→  is ( ),φ ψ  -convex if and only if 

1fψ φ−
   is convex on ( )Iφ . And if ψ  is a 

decreasing function, then :f I J→  is ( ),φ ψ 
-convex if and only if 1fψ φ−

   is a concave 
function on ( )Iφ . 

Lemma 2. (Niculescu & Persson, 2006, 
Lemma A.22) If ψ is increasing on J, then 

:f I J→  is ( ),φ ψ  -convex function if and 
only if ( ) ( )1g x f xψ φ−=    is convex on ( )Iφ .

Next is some knowledge about q-derivatives 
and q-integrals where q is always understood as a 
real number in the range ( )0,1 .  

Definition 3. (Tariboon & Ntouyas, 2013) Let 
[ ]: ,f a b →  be a continuous function. Then 

q-the left derivative of f  at [ ],x a b∈  is defined 
as follows 

A function f  is called q-differentiable on 
[ ],a b  if ( )a qD f x  exists for all [ ], .x a b∈  

Definition 4. (Tariboon & Ntouyas, 2013) Let 
[ ]: ,f a b →  be a continuous function. Then 

q-left integral of f  at [ ],x a b∈  is defined as 
follows

0

( ) ( ) (1 )( ) ( (1 ) ).
x n n n

a qa
n

f t d t q x a q f q x q a
∞

=

= − − + −∑∫
A function f  is called q- integrable on [ ],a b  if 

( ) ( )
x

a qa
f x d t∫  exists for all [ ], .x a b∈  

In particular, if 0a =  then we get the Jackson 
q-integral  (Jackson, 1910)

( )00 0
0

( ) ( ) ( ) ( ) (1 ) .
x x n n

q q
n

f t d t f t d t q x q f q x
∞

=

= = − ∑∫ ∫  

Comment 5. (Bermudo & et al., 2020, Tariboon 
& Ntouyas, 2013, 2014) Let [ ]: ,f a b →  be a 
continuous function, then

1. ( ) ( ) ( ) ( ).
x

a q a qa
D f x d t f x f a= −∫  

2. ( ) ( ) ( ) ( )
x

a q qc
D f x d t f x f c= −∫  for all 

( ), .c a x∈  

3. [ ]( ) ( ) ( ) ( ) ( )
x x

q a qaa a
f x g x d t f x d tα β α+ = +∫ ∫  

    ( ) ( ).
x

a qa
g x d tβ ∫  

4. If g is a continuous function on [ ],a b  and 
( ) ( )f t g t≤  for all [ ],t a b∈  then

( ) ( ) ( ) ( ).
x x

a q a qa a
f t d t g t d t≤∫ ∫

On the other hand, Bermudo and colleagues in 
2020 introduced the concepts of right q-derivative 
and right q-integral as follows.

Definition 6. (Bermudo & et al., 2020) Let 
[ ]: ,f a b →  be a continuous function. Then, 

q-the left derivative of f  at [ ],x a b∈  is defined 
as follows

A function f  is called q- differentiable on 
[ ],a b  if ( )a qD f x  exists for all [ ], .x a b∈  

Definition 7. (Bermudo & et al., 2020) Let 
[ ]: ,f a b →  be a continuous function. Then 

q-right integral of f  at [ ],x a b∈  is defined as 
follows

( )( )
0

( ) ( ) (1 )( ) 1
b b n n n

qx
n

f t d t q b x q f q x q b
∞

=

= − − + −∑∫
A function f   is called q-integrable right on [ ],a b  

if ( ) ( )
b

b
q

x

f x d t∫  exists for all [ ], .x a b∈  

From Remark 5, we can also obtain similar 
properties for the right q-integral.

Next, we will establish and prove the q-Hermite-
Hadamard inequality and the q-Fejér inequality 
for the ( ),φ ψ  -convex function.

In this article, we always assume :f I J→  
is a ( ),φ ψ  -convex function; ,a b I∈  with 
a b< ; ( )0;1 ;α ∈  ( )0;1q∈ ;  [ ] [ ): 0,1 0,w → ∞  
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is a q-integral function and satisfies the condition 
( )

0

0
s

qw t d t >∫  for all ( ]üs∈ . Symbol

( ) ( )( ), , ; ;t a a b tφ φ α=  

and 
( ) ( )( ), , ; ;t b a b tφ φ α=  

with [ ]0,1 .t∈  
Lemma 8. (Duc & et al., 2020) Let 
[ ], : 0,1 → �  be functions respectively defined 

by
( )( ) ( ), ( );t f t f tψ α=     

and

( ) ( ) ( )( )1 , 0 ; .t tψ=   

Then,   and   are ψ -convex, increasing 
functions on [ ]0,1  and

          ( ) ( ) ( )( )0 0 , ;f a bφ α= =  
         ( ) ( )t t≤  , [ ]0,1 ,t∈           (7)
        ( ) ( ) ( ) ( )( )1 1 , ; .f a f bφ α= =  
Theorem 9 (q-Hermite-Hadamard inequality). 

Let :f I J→  be a ( ),φ ψ  -convex function. 
Then

( )( , ; )f a bφ α
( , ; )(1 ) ( ) ( )

( ) ( )
a b

a qa
f x d x

b a
φ αα ψ φ

φ φ
−

≤
− ∫ 


 

( , ; )
( ) ( )

( ) ( )
b b

qa b
f x d x

b a φ α

α ψ φ
φ φ

+
− ∫ 


    (8)

( )1 ( ( ), ( ); )
1

f a f b
q φψ α≤

+
  

 
( )( , ; ) .

1
q f a b

q φψ α+
+

   

Proof. For all [ ]0,1t∈  
( ) ( ) ( )( )10 t f A tψ ψ αψ φ−≤ =      

                ( ) ( )( )11 f B tα ψ φ−+ −       (9)
where
( ) ( ) ( ) ( ) ( ) ( )( )1 1A t t a t a bφ αφ α φ= + − + −

and
( ) ( ) ( ) ( ) ( ) ( )( )1 1B t t b t a bφ αφ α φ= + − + − .

Taking q-integrate both sides of (9) we get  
 ( ) 1 1

0
( , ; ) ( ( )) qf a b f A t d tφψ α α ψ φ−° ≤ ∫  

     
1 1

0
(1 ) ( ( ))  qf B t d tα ψ φ−+ − ∫  

  
( , ; )(1 ) ( ) ( )

( ) ( )
a b

a qa
f x d x

b a
φ αα ψ φ

φ φ
−

=
− ∫ 



         
( , ; )

( ) ( ).
( ) ( )

b b
qa b

f x d x
b a φ α

α ψ φ
φ φ

+
− ∫ 



On the other hand

( ) ( ) ( )( )( ), ;t t f a f bφψ ψ α≤ 
( ) ( )( )1 , ; .t f a bφψ α+ −    

Taking q-integrate both sides we get

( )1 1

0 0
( ) ( ( ), ( ); )q qt d t f a f b td tφψ ψ α≤∫ ∫ 

                       ( ) 1

0
( , ; ) (1 ) qf a b t d tφψ α+ −∫   

                     ( )1 ( ( ), ( ); )
1

f a f b
q φψ α=

+
  

                 ( )( , ; ) .
1

q f a b
q φψ α+

+
   

The theorem has been proven.    
Comment 10. In case f  is a convex function  
( ) ( )x x xψ φ= = , inequality (8) becomes 

q-Hermite-Hadamard inequality (5). By choosing 
special functions ψ  and φ , we will get q-Hermite-
Hadamard inequalities for generalized convex 
functions such as log-convex function, harmonic 
convex function, kernel convex function, harmonic 
log-convex function, p-convex function,… 

Theorem 11. With ( ]0,1s∈ , we set

( )
( ) ( )

( )
1 0

0

s

q

s

q

t w t d t
s

w t d t

ψ
ψ −

 ° =  
 
 

∫
∫




 and

( )
( )

( )
0

0

s

q

s

q

tw t d t
s

w t d t
β = ∫

∫
.

Then β ,   and β  are increasing 
functions on ( ]0,1  and satisfied

0 0 0
lim ( ) lim ( ) lim ( ) (0),
s s s

s s sβ β
+ + +→ → →

= = =    

( ) ( ) ( ), (0,1].s s s sβ β≤ ≤ ∈         (10)
To prove the above theorem, we need the 

following result.
Lemma 12. Let [ ]: 0,1P →  be a increasing, 

continuous function. With ( ]0,1s∈ , we set

( )
( ) ( )

( )
0

1

0

.

s

q

s

q

P t w t d t
P s

w t d t
= ∫

∫
Then 1P  is a increasing function on  ( ]0,1  and 

( ) ( ) ( ) ( )1 1
0

lim 0 ,
s

P s P P s P s
+→

= ≤ ≤ ( ]0,1 .s∈  (11)

Proof. Proof similar to Duc & et al. 2020 
Lemma 2.4.

Now we prove Theorem 11.
Proof Theorem 11. Since ψ  is strictly 

monotonic, we need to consider two cases of ψ . 
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Suppose first that ψ  increases strictly on J.  Since 
ψ  is continuous on J, 1ψ −  is continuous and 
strictly increasing on ( )Jψ .  

Applying Lemma 8 and Lemma 12 to 
P ψ=  ,  ψ   increases on ( ]0,1  with

( ) ( )
0

lim 0 .
s

sψ ψ
+→

=  

Since 1ψ −  is continuous and strictly increasing 
on on ( )Jψ ,   increases on ( ]0,1  and 

( ) ( )
0

lim 0 .
s

s ψ
+→

=  

Again according to Lemma 12, we have β  
increasing on ( ]0,1  with

     ( ) ( )
0

lim 0 ,
s

s s sβ β
+→

= ≤ ≤      ( ]0,1 .s∈

Therefore β  and β  determine, 
increase on ( ]0,1  and 

( ) ( ) ( )
0 0

lim lim 0 .
s s

s sβ β
+ +→ →

= =     

Next, we prove the inequalities in (10). Fixed 
( ]0,1s∈ . Applying Jensen’s inequality (see 

Pečarić & et al., 1992, Chapter 2) to the convex 
function ψ °  on the interval [ ]0, s , we get 

Because ( ) ( )t t≤  , so

0 0

0 0

( ) ( ) ( )
.

( ) ( )

q q

s s

s s

q q

tw t d t t w t d t

w t d t w t d t

ψ
ψ

 
  ≤  
 

∫ ∫
∫ ∫








Inferred that

( ) ( ).s sβ ≤ 

Due to ( ) ( )t t≤  , [ ]üt∈ , the continuity 
of the functions ( )t  and ( )t  on [ ]0,1  along 
with the monotonicity of the q-integral, we have 

0 0

0 0

( ) ( ) ( ) ( )

( ) ( )

s s

q q

s s

q q

t w t d t t w t d t

w t d t w t d t

ψ ψ
≤∫ ∫

∫ ∫

  

                                          ( ).sψ β=  
Because 1ψ −  increases

( ) ( )s sβ≤   .
The theorem is proven similarly for the case 

where ψ  is a decreasing function.                        
From Theorem 11, we can establish a number 

of Fejér-type inequalities for ( ),φ ψ  -convex 
functions by choosing different w  functions. For 
example, we choose

( ) (1 ) ( ) ( )w t g t g tα α= − +   ,   [0,1],t∈
where [ ):[ , ] 0,g a b → ∞  is chosen satisfactorily
1 ( ) ( )

1
g t g tα α

α α
−

=
−

   , [0, ]t s∈     (12)

Note that when 1 / 2α =  and ( )x xφ = , 
Assumption (12) reduces to the assumption that g 
is symmetric about ( ) / 2.a b+  

0 0 0
( ) (1 ) ( ) ( )

s s s

q q qw t d t g t d t g t d tα α= − +∫ ∫ ∫  

                  
( , ; )

( )

1 ( ) ( )
( ) ( )

a b

a qs
g x d x

b a
φ α

φ
φ φ

=
− ∫





                     
( )

( , ; )

1 ( ) ( )
( ) ( )

s b
qa b

g x d x
b a φ α

φ
φ φ

+
− ∫




 

and

0
( ) ( )

s

qt w t d tψ∫    

0
(1 ) ( ( )) ( )

s

qf t g t d tα ψ= − ∫    

 
0

( ( )) ( )
s

qf t g t d tα ψ+ ° ° °∫    

( , ; )

( )

1 ( ( )) ( ) ( )
( ) ( )

a b

a qs
f x g x d x

b a
φ α

ψ φ
φ φ

=
− ∫ 





( )

( , ; )

1 ( ( )) ( ) ( )
( ) ( )

s b
qa b

f x g x d x
b a φ α

ψ φ
φ φ

+
− ∫ 





And so

( , ; )

( )1
( , ; ) ( )

( ) ( , ; )

( )

( ( )) ( ) ( )

( ) ( ) ( ) ( )

a b

a qs
a b s b

a q qs a b

s

f x g x d x

g x d x g x d x

φ

φ

φ

α

α

α

ψ φ
ψ

φ φ

−




= 
 +


∫
∫ ∫






 

 



        

( )

( , ; )
( , ; ) ( )

( ) ( , ; )

( ( )) ( ) ( )
.

( ) ( ) ( ) ( )

s b
qa b

a b s b
a q qs a b

f x g x d x

g x d x g x d x

φ

φ

φ

α
α

α

ψ φ

φ φ




+ 
+


∫
∫ ∫







 

 

 

Together with Theorem 11, we have the following 
result.

Corollary 13 (q-Fejér inequality). Let 
:f I J→  be a ( ),φ ψ  -convex function. 

Suppose [ ] [ ): , 0,g a b → ∞  is a q-integral function, 
with 

0
( ) 0

s

qg t d t >∫ 

for all ( ]0,1s∈  and satisfy (12). Then, for all 
( ]0,1s∈ , we have
( )( , ; )f a bφ α

 
10

10

( )

( )

s

q

s

q

tg t d t

g t d t

 
 ≤  

° 
 

∫
∫





 

( , ; )

( )1
( , ; ) ( )

( ) ( , ; )

( ( )) ( ) ( )

( ) ( ) ( ) ( )

a b

a qs
a b s b

a q qs a b

f x g x d x

g x d x g x d x

φ

φ

φ

α

α

α

ψ φ
ψ

φ φ

−




≤ 
 +


∫
∫ ∫
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( )

( , ; )
( , ; ) ( )

( ) ( , ; )

( ( )) ( ) ( )

( ) ( ) ( ) ( )

s b
qa b

a b s b
a q qs a b

f x g x d x

g x d x g x d x

φ

φ

φ

α
α

α

ψ φ

φ φ

° 
+ 

+


∫
∫ ∫





 

 

0

0

( )

( )

s

q

s

q

tg t d t

g t d t

 
 ≤  
 
 

∫
∫









 

 1( ( ) (1 ) ( )).f a f bψ αψ α ψ−≤ + −             (13)
Comment 14. 
1. In (13), if given 1p →  then we get the Fejér 

inequality for the ( ),φ ψ  -convex function 
established in Duc & et al., 2020.

2. By choosing special functions ψ  and φ , we 
will get q-Fejér inequalities for generalized convex 
functions, such as log-convex function, harmonic 
convex function, kernel convex function, harmonic 
log-convex function, p-convex function.

3. In addition, inequality (13) is also an extension 
and smoothing of inequalities (5), (8). Indeed, 
choose 1 / 2α = , 1g =   and ( ) ( )x x xψ φ= = . 
Then, inequality (13) follows

2
a bf + 

 
 

(2 3) (2 1) (2 1) (2 3)
4(1 ) 4(1 )

2

q a q b q a q bf f
q q

   + + + + + +
+   + +   ≤

( 2)
2(1 )2

( 2)
2(1 ) 2

2 ( ) ( )
a q ba b

bq
a q qq a b a b

q

f x d x f x d x
b a

+ ++
+

+ + +
+

 
 ≤ +

−   
∫ ∫   

( 2) ( 2)
2(1 ) 2(1 )

2

q a b a q bf f
q q

   + + + +
+   + +   ≤  

2

2

1 ( ) ( )
a b b b

a ba q qa
f x d x f x d x

b a

+

+

 
≤ + 

−   
∫ ∫  

1 ( ) ( )
1 2 1 2

f a f b q a bf
q q

+ + ≤ +  + +  
 

( ) ( ) .
2

f a f b+
≤  

4. CONCLUSION
In the article, we have established and proven 

the q-Hermite-Hadamard inequality and q-Fejér 
inequality for the class of ),φ ψ  -convex 
functions. The new inequalities are extended, 
smoothed results for the q-Hermite-Hadamard 
inequality for the class of convex functions. The 
new techniques in estimation and evaluation used 
in the article can be applied for further research in 
the field of q-integral inequalities related to other 
classes of generalized convex functions.

MỘT SỐ BẤT ĐẲNG THỨC Q-FEJÉR CHO HÀM  ( ),φ ψ  -LỒI
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