Some q-fejér inequaliries for $$(M_\phi,M_\psi)$$ -convex functions

Main Article Content

Some q-fejér inequaliries for $$(M_\phi,M_\psi)$$ -convex functions

Tác giả

Nguyễn Ngọc Huề

Tóm tắt

 In this paper, we consider a class of generalized convex functions, which are defined according to a pair of quasi-arithmetic means and called $$(M_\phi,M_\psi)$$ -convex functions and establish some q-Fejér inequalities for such a function class.

Article Details

Chuyên mục
Khoa học Tự nhiên & Công nghệ
Tiểu sử Tác giả

Nguyễn Ngọc Huề

Khoa Khoa học Tự nhiên và Công nghệ, Trường Đại học Tây Nguyên;
Tác giả liên hệ: Nguyễn Ngọc Huề; ĐT: 0905684768; Email: nnhue@ttn.edu.vn.

Tài liệu tham khảo

  • Ali, M. A. & et al. (2023). A new version of q-Hermite-Hadamard's midpoint and trapezoid type inequalities for convex functions. J. Math. Slovaca., 73, 369-386
  • Alp, N. & et al. (2018). q-Hermite-Hadamard inequalities and quantum estimates for midpoint type inequalities via con-vex and quasi-convex functions, J. King Saud. Univ. Sci., 30, 193-203.
  • Aumann. G. (1933). Konvexe Funktionen und die Induktion bei Ungleichungen zwischen Mittelwerten, Sitzungsber., Bayer. Akad. Wiss., Math.- Naturwiss. Kl., 1933, 403-415.
  • Bermudo, S. & et al. (2020). On q-Hermite-Hadamard inequalities for general convex functions, Acta Math. Hungar., 162, 364-374.
  • Duc, D.T. & et al. (2020). Convexity according to a pair of quasiarithmetic means and inequalities, J. Math. Anal. Appl., 488, 124059.
  • Ernst, T. (2012). A Comprehensive Treatment of q-Calculus, Birkhäuser/Springer (Basel).
  • Fejér. L. (1996). Über die Fourierreihen II, Math. Naturwiss. Anz. Ungar. Akad. Wiss., 24, 369-390 (in Hungarian).
  • Hermite. Ch. (1883). Sur deux limites d'une intégrale dé finie, Mathesis, 3, p. 82.
  • Hadamard. J. (1893). Étude sur les propriétés des fonctions entiéres et en particulier d'une fonction considérée par Riemann', J. Math. Pures Appl., 58, 171-215.
  • Jackson, F. H. (1910). On q-definite integrals, Quart. J. Pure Appl. Math., 41, 193-203.
  • Kac, V. & Cheung, P. (2002). Quantum Calculus, Springer (New York).
  • Liu, W. & Hefeng, Z. (2016). Some quantum estimates of Hermite-Hadamard inequalities for convex functions, J.Appl. Anal. Comput. 7, 501-522.
  • Niculescu, C.P. & Persson, L.-E. (2006). Convex Functions and their Applications. A Contemporary Approach, CMS Books in Mathematics, vol. 23, Springer, New York.
  • Noor, M. A. & et al. (2015). Some quantum estimates for Hermite-Hadamard inequalities, Appl. Math. Comput. 251, 675-679.
  • Noor, M. A. & et al. (2015). Some quantum integral inequalities via preinvex functions, Appl. Math. Comput. 269, 242-251.
  • Pečarić, J.E. & et al. (1992). Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston.
  • Tariboon, J. & Ntouyas, S. K. (2013). Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Diff. Equ., 282, 1-19.
  • Tariboon, J. & Ntouyas, S. K. (2014). Quantum integral inequalities on finite intervals, J. Inequal. Appl., 2014, 121.