In silico identification of candidate genes for dehydration stress response in robusta coffee genome (Coffea canephora L.)

Main Article Content

In silico identification of candidate genes for dehydration stress response in robusta coffee genome (Coffea canephora L.)

Tác giả

Nguyễn Đình Sỹ
Nguyễn Ngọc Hữu
Trần Văn Cường
Nguyễn Văn Tịnh

Tóm tắt

Coffea canephora L., which is belonging to the Rubiaceae family, is one of the most popular cultivated coffea worldwide. In this study, we identified and analysed candidate genes that involve in dehydration stresses response in C. canephora L. genome. The results showed that genome of C. canephora L. consists of 37 protein-coding genes related to drought stress response which are divided into 5 main groups depending on domain and motif such as Dehydration-induced 19 (Di 19); Senescence/dehydration-associated protein-related genes; Dehydration-responsive element-binding protein; Dehydration-responsive protein RD22; Early responsive dehydration (ERD). Determination of subcellular localization indicated that there are 2 protein-coding genes as Cc01_g21190 and Cc08_ g08870 localize in chloroplast; 1 protein-coding gene as Cc10_g02270 localize in mitochondria and 1 protein coding gene as Cc05_g03850 localize in peroxisome. The study on candidate protein coding genes relating dehydration stress response is important for elucidating protein functions involved in various cellular processes and stress response.

Article Details

Chuyên mục
Khoa học Kỹ thuật và Công nghệ
Tiểu sử của Tác giả

Nguyễn Đình Sỹ

Khoa Khoa học Tự nhiên và Công nghệ, Trường Đại học Tây Nguyên;
Tác giả liên hệ: Nguyễn Đình Sỹ; ĐT: 0961367958; Email: ndsy@ttn.edu.vn.

Nguyễn Ngọc Hữu

Khoa Nông Lâm nghiệp, Trường Đại học Tây Nguyên

Trần Văn Cường

Khoa Nông Lâm nghiệp, Trường Đại học Tây Nguyên

Nguyễn Văn Tịnh

Bộ môn Khoa học Cơ bản, Trường Đại học Buôn Ma Thuột

Tài liệu tham khảo

  • Albuquerque, É. V. S. et al. (2015). 'Seed-Specific Stable Expression of the α-AI1 Inhibitor in Coffee Grains and the In Vivo Implications for the Development of the Coffee Berry Borer', Tropical Plant Biology, 8(3–4), pp. 98–107. doi: 10.1007/s12042-015-9153-0.
  • Barbosa, A. E. A. D. et al. (2010). 'α-Amylase inhibitor-1 gene from Phaseolus vulgaris expressed in Coffea arabica plants inhibits α-amylases from the coffee berry borer pest', BMC Biotechnology, 10(May 2014). doi: 10.1186/1472-6750-10-44.
  • Batchelor, A. K. et al. (2002). 'SCB1, a BURP-domain protein gene, from developing soybean seed coats', Planta, 215(4), pp. 523–532. doi: 10.1007/s00425-002-0798-1.
  • Broglie, K. E. et al. (1989). 'Functional analysis of DNA sequences responsible for ethylene regulation of a bean chitinase gene in transgenic tobacco.', The Plant cell, 1(6), pp. 599–607. doi: 10.1105/ tpc.1.6.599.
  • Bulgarelli, R. G. et al. (2016). 'Expression of metallothionein genes in coffee leaves in response to the absence or excess of Cu and Zn', Theoretical and Experimental Plant Physiology. Springer International Publishing, 28(4), pp. 371–383. doi: 10.1007/s40626-016-0075-5.
  • Catarino, I. C. A. et al. (2021). 'Elevated [CO2] Mitigates Drought Effects and Increases Leaf 5-O-Caffeoylquinic Acid and Caffeine Concentrations During the Early Growth of Coffea Arabica Plants', Frontiers in Sustainable Food Systems, 5(July), pp. 1–12. doi: 10.3389/fsufs.2021.676207.
  • Coluccio, A. et al. (2004) 'Morphogenetic Pathway of Spore Wall Assembly in Saccharomyces cerevisiae', Eukaryotic Cell, 3(6), pp. 1464–1475. doi: 10.1128/EC.3.6.1464-1475.2004.
  • Denoeud, F. et al. (2014). 'The coffee genome provides insight into the convergent evolution of caffeine biosynthesis.', Science (New York, N.Y.), 345(6201), pp. 1181–1184. doi: 10.1126/science.1255274.
  • Dinh, S. N. and Kang, H. (2017). 'An endoplasmic reticulum-localized Coffea arabica BURP domaincontaining protein affects the response of transgenic Arabidopsis plants to diverse abiotic stresses', Plant Cell Reports, 36(11), pp. 1829–1839. doi: 10.1007/s00299-017-2197-x.
  • Esteves Vieira, L. G. et al. (2006). 'Brazilian coffee genome project: An EST-based genomic resource', Brazilian Journal of Plant Physiology, 18(1), pp. 95–108. doi: 10.1590/S1677-04202006000100008.
  • Fujimoto, S. Y. et al. (2000). 'Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression', Plant Cell, 12(3), pp. 393–404. doi: 10.1105/tpc.12.3.393.
  • Gosti, F. et al. (1995). 'Abscisic acid-dependent and -independent regulation of gene expression by progressive drought in Arabidopsis thaliana', Molecular and General Genetics MGG, 246(1), pp. 10–18. doi: 10.1007/BF00290128.
  • Hattori, J. et al. (1998). 'A conserved BURP domain defines a novel group of plant proteins with unusual primary structures', Molecular and General Genetics MGG, 259(4), pp. 424–428. doi: 10.1007/ s004380050832.
  • Huerta-Cepas, J., Serra, F. and Bork, P. (2016). 'ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data', Molecular Biology and Evolution, 33(6), pp. 1635–1638. doi: 10.1093/ molbev/msw046.
  • ICO (2021). International Coffee Organization website. Available at: https://www.ico.org/
  • LI, S. et al. (2010). 'Functional analysis of TaDi19A , a salt-responsive gene in wheat', Plant, Cell & Environment. doi: 10.1111/j.1365-3040.2009.02063.x.
  • McCarthy, A. A. et al. (2007). 'Cloning, expression, crystallization and preliminary X-ray analysis of the XMT and DXMT N-methyltransferases from Coffea canephora (robusta)', Acta Crystallographica Section F: Structural Biology and Crystallization Communications. International Union of Crystallography, 63(4), pp. 304–307. doi: 10.1107/S1744309107009268.
  • Mishra, M. K. and Slater, A. (2012). 'Recent Advances in the Genetic Transformation of Coffee', Biotechnology Research International, 2012, pp. 1–17. doi: 10.1155/2012/580857.
  • Nguyen Dinh, S. et al. (2016). 'Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants (Coffea arabica) and rice (Oryza sativa)', Journal of Plant Physiology. Elsevier GmbH., 201, pp. 85–94. doi: 10.1016/j.jplph.2016.07.004.
  • Nguyen Dinh Sy et al. (2022). 'Overview C. canephora L. genome and its function in stress response and caffeine biosynthesis'. Tay Nguyen Journal of Science. No. 56. pp.15-23.
  • Ogawa, N., DeRisi, J. and Brown, P. O. (2000). 'New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis', Molecular Biology of the Cell, 11(12), pp. 4309–4321. doi: 10.1091/mbc.11.12.4309.
  • Pallavicini, A. et al. (2005). Transcriptomics of resistance response in Coffea arabica L.
  • Panavas, T. et al. (1999). 'Identification of senescence-associated genes from daylily petals.', Plant molecular biology. Netherlands, 40(2), pp. 237–248. doi: 10.1023/a:1006146230602.
  • Perrois, C. et al. (2015). 'Differential regulation of caffeine metabolism in Coffea arabica (Arabica) and Coffea canephora (Robusta)', Planta, 241(1), pp. 179–191. doi: 10.1007/s00425-014-2170-7.
  • Price, M. N., Dehal, P. S. and Arkin, A. P. (2010). 'FastTree 2 - Approximately maximum-likelihood trees for large alignments', PLoS ONE, 5(3). doi: 10.1371/journal.pone.0009490.
  • Privat, I. et al. (2011). 'The "PUCE CAFE" Project: The First 15K Coffee Microarray, a New Tool for Discovering Candidate Genes correlated to Agronomic and Quality Traits', BMC Genomics, 12. doi: 10.1186/1471-2164-12-5.
  • Raharimalala, N. et al. (2021). 'The absence of the caffeine synthase gene is involved in the naturally decaffeinated status of Coffea humblotiana, a wild species from Comoro archipelago', Scientific Reports. Nature Publishing Group UK, 11(1), pp. 1–14. doi: 10.1038/s41598-021-87419-0.
  • Silva, K. J. P. et al. (2018). 'NPR1 as a transgenic crop protection strategy in horticultural species', Horticulture Research. Springer US, 5(1), pp. 16–18. doi: 10.1038/s41438-018-0026-1.
  • Torres, L. F. et al. (2019). 'Expression of DREB-Like Genes in Coffea canephora and C. arabica Subjected to Various Types of Abiotic Stress', Tropical Plant Biology, 12(2), pp. 98–116. doi: 10.1007/s12042- 019-09223-5.
  • Vadivelu, J. (2013). 'Microbial Pathogens and Strategies for Combating them: Science, Technology and Education', in.
  • Weigel, D. (1995). 'The APETALA2 domain is related to a novel type of DNA binding domain.', The Plant cell, 7(4), pp. 388–389. doi: 10.1105/tpc.7.4.388.
  • Zhu, J. et al. (2008). 'Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks.', Nature genetics. United States, 40(7), pp. 854–861. doi: 10.1038/ng.167.